
Low-rank Decompositions of Musical STFT Tensors

Nicholas Richardson

December 15, 2022

1 Introduction

Many tools exist for analyzing audio data, but one of the most widely used is the short-time Fourier
transform (STFT) either on its own, or in conjunction with classical or modern approaches [1]. Another
set of tools, tensor decompositions, have proven useful in compressing, approximating, and synthesizing
high order data across applications [2]. So we ask how tensor decompositions may be used on STFTs to
examine such signals. The main problem we are interested in is how to analyze audio recordings of musical
instruments and extract important information about the notes and rhythms played. One way we may do
this is to consider low-rank decompositions where each term in the factorization corresponds to a different
feature, similar to [3]. We may expect these STFTs to have some low-rank structure since single instrument
recordings typically contain a sequence of notes, where each note has a fixed set of frequencies and overall
amplitude [4].

This report begins with necessary background information such as signal processing, the short-time
Fourier transform, and non-negative canonical polyadic tensor decomposition in Section 2. The two main
experiments and results are discussed in Section 3. Lastly, since the project is more exploratory in nature,
we conclude with a summary of the findings and further work to consider in Section 4.

2 Background

2.1 Signal Processing

The main problem revolves around working with audio signals. For our purposes, we use the Waveform
Audio File (WAV) format, which can be treated as a single vector y ∈ RN . We think of the entries yn = y(tn)
as samples from a continuous real function y : [0, T] −→ R where the time points are evenly spaced on some
domain [0, T]. This format also stores the sampling rate f = T/N samples per second which can be used to
recover the time points tn.

When working with audio, it is common practice in musical recordings to peak-normalize the vectors by
dividing by the maximum absolute value entry so that ∥y∥∞= maxn|yn| = 1 [5]. This limits the range of
values between −1 and 1 so different songs can be processed at the same volume. This also ensures accurate
playback since most audio engines “clip” any values outside [−1, 1] by replacing them with a −1 or 1.

2.2 Short-time Fourier Transform

To better analysis the signals, the (discrete) Short-time Fourier Transform (STFT) is used [6]. This
transforms a vector y ∈ RN into the matrix STFT(y) = Y ∈ CK,L according to

Yk,l =

N−1∑
n=0

yn+1wl−n−1e
− i2π

N kn.

This can be thought of as performing a Fourier Transform along a short time interval given by a sliding
window w. The k, l entry of Y then gives information about the frequency k localized at the time point tnl

.

1

In practice, L may only be a fraction of N (not all time points tl are considered) where the window hops
from being centred at tnl

to tnl+1
with a hop size h = nl+1 − nl.

The window we use for the experiments in Section 3 is the Hann window which is well suited for musical
signals [7]. It is defined as wn = sin2(πn/N), where the window is zero for n < 0 and n ≥ W . We use
a “width” W = 40 and hop size h = W/2 − 1 = 19 samples in Section 3. This choice of width is used
to balance the trade off between good frequency resolution (large widths) and good time resolution (small
widths) according to the uncertainty principle [6].

The magnitude of the STFT entries gives the amplitude of a frequency at a particular point in time
and ignores the complex phase. For many audio applications, this is sufficient to analysis the signal, since
humans can detect changes in amplitude but not in phases in general. For this reason, we give a name to
the entry-wise magnitude of the STFT, |Y |, and will refer to this as the (magnitude) spectrogram. Note
that other definitions are commonly used such as |Y |2 or log|Y | [7].

Now given a STFT Y ∈ CK,L, it is also possible to recover the time domain signal y = STFT−1(Y)
similar to the inverse of the Fourier transform. But this inversion cannot be done directly on a spectrogram
|Y | = S ∈ RK,L. To go from S to y, we must add some complex phase to the entries Ykl = Skl exp(iΘkl).
There are sophisticated methods for estimating what this phase should be for a given spectrogram as explored
in [8], but one simple estimation is to reuse the the complex angles of the STFT Θ = ∠Y . On complex
numbers z = reiθ ∈ C, we have ∠z = θ ∈ R. On a complex matrix Z ∈ Cm×n, ∠Z ∈ Rm×n acts element-wise.
In the case we have the full spectrogram S = |Y |, this does recover the signal y exactly. The advantage of
decoupling the magnitude from the phase is that this allows us to easily process and work with a real-valued
and non-negative matrix S. And if we make modifications or approximations of the spectrogram S̃, such as
the low-rank decomposition performed in Section 3, we will still be able to invert it back to a standard time
domain signal.

2.3 Non-negative Canonical Polyadic Decomposition

The tensor decomposition algorithm we use is Xu and Yin’s block coordinate descent method [9] applied
to the non-negative canonical polyadic decomposition (NNCP) problem. Their method can be applied to a
tensor of any order, but for our problem we assume a 3-order tensor T ∈ R≥0

n1×n2×n3 is given. The method
also requires an assumed tensor rank r ∈ N of T .

The problem can be stated as finding a decomposition

T =

r∑
l=1

a(l) ⊗ b(l) ⊗ c(l)

of T where a(l) ∈ Rn1 , b(l) ∈ Rn2 , c(l) ∈ Rn3 . Here, we wish to find the a, b, c’s which minimize the squared

error of the entries. Writing A ∈ R≥0
n1×r where Ail = a

(l)
i and similarly for B,C, we summarize the problem

as the following:

min
A,B,C

1

2
∥T −A ◦B ◦ C∥2F

= min
A,B,C

1

2

∑
ijk

(
Tijk −

∑
l

AilBjlCkl

)2

= min
A,B,C

F (A,B,C).

To solve this, we iterate over the factors A,B,C, keeping the other two fixed, with the following update
scheme:

An+1 = argmin
A

⟨∇AFn, A− Ân⟩+
λ
(A)
n

2
∥A− Ân∥2F . (1)

2

The first term of (1) encourages the new step to go in the direction of the negative gradient, and the
second term ensures the new step is not too far from the old one. This has the closed form solution

An+1 = max(0, Ân −∇AFn/λ
(A)
n). (2)

Note in (2) that we update An+1 using Ân = An +ω
(A)
n (An −An−1) rather than the previous step An. This

allows for some momentum in the update to prevent getting stuck in small local minimums.

To fully describe the method, we must pick λ
(A)
n and ω

(A)
n . These are selected to optimize the decent at

each iteration, and the full details of their derivation can be seen in [9]. We use the inverse step size

λ(A)
n =

∥∥∥(M (A)
n)⊤M (A)

n

∥∥∥
2
, M (A)

n = Bn ∗ Cn

and momentum

ω(A)
n = min

 tn−1 − 1

tn
,
1

2

√√√√λ
(A)
n−1

λ
(A)
n


where the variable tn is updated as tn+1 = 1

2

(
1 +

√
1 + 4t2n

)
. The ∗ symbol is used to denote the Khatri-Rao

product or the column-wise Kronecker product

A ∗B = [Vec (a(1) ⊗ b(1)), . . . ,Vec (a(r) ⊗ b(r))] ∈ Rn1n2×r

for matricies A ∈ Rn1×r and B ∈ Rn2×r. Lastly, we initialize A0, B0, and C0 with independent standard
normal distributed entries, and t0 = 1.

3 Experiments

3.1 Data & Software

The songs used in the experiment are taken from the MUSDB18HQ song dataset [10]. This dataset
contains 150 full songs in WAV format, in addition to the isolated bass, drums, vocals, and other instruments.
To reduce the size of the problem, only the first 27 songs in the dataset are considered.

The experiments were coded using the Julia Language, and the implementation of the NNCP algorithm
from the TensorDecompositions package is used for the tensor decomposition [11]. The full code is available
on GitHub.1

3.2 2-order Tensor

The first experiment conducted can be treated as a diagnostic run to ensure everything is set up correctly,
and we can interpret the results correctly. We first consider the bass track to the first song “Night Owl” by
A Classic Education. Our tensor T ∈ R2049×106×1 is constructed by setting Ti,j,1 = |Yi,j | = |STFT(y)i,j |
where 5 seconds of the song is used at the input signal y. We start the song at the 10 second mark to skip
over any initial silence in the intro before the bass enters. Figure 1 displays the song y in the usual time
domain, and its spectrogram |Y |.

We perform rank-1 NNCP decomposition T = a⊗b⊗c to recover the important frequencies a, amplitude
b, and (in this case) a redundant scalar c. This is essentially a non-negative rank-1 matrix factorization.
The reason for appending a trivial a dimension is only to reuse the same code for the following experiment
in Section 3.3.

In Figure 2, we see the average harmonic frequencies of the bass are extracted in a. This is similar to what
the magnitude of a standard Fourier transform would yield. The factor b represents what can be thought of
as the time varying “envelope” or instantaneous amplitude of the notes being played [12]. Although there
exists classical ways of recovering this envelope, this non-negative rank-1 decomposition on the song has
recovered the frequencies and envelope jointly.

1https://github.com/njericha/TensorDecompSTFT

3

https://github.com/njericha/TensorDecompSTFT

Figure 1: (Left) The input bass signal y. Here the time is given as seconds from the start of the song.
(Right) Spectrogram |Y | of the input bass signal.

Figure 2: The learned factors a (left) and b (right) in the tensor decomposition of T = a ⊗ b ⊗ c. The first
factor corresponds to the average amplitude of that frequency, and the second corresponds to the relative
amplitude of the signal at that time.

3.3 3-order Tensor

Similar to the first experiment, we construct our tensor T ∈ R2049×106×27 where Ti,j,k = |Y k
i,j | and yk is

the bass part of the kth song in the dataset. Again, we only use 5 second clips of the songs starting at the
10 second mark to skip over any intro silence before the bass parts enter. This time, we perform rank-11
NNCP decomposition T = A ◦ B ◦ C =

∑11
l=1 a

(l) ⊗ b(l) ⊗ c(l) to recover the important frequencies A, their
rhythms B, and presence in each song C. We also peak-normalize each song yk is to ensure all songs are at
the same volume and the low-rank factors don’t favour approximating one song over another.

We justify our assumption that the tensor is well approximated by a rank-11 tensor by considering the
musical nature of the recordings. Western music commonly uses the same 11 notes2 and their octaves. The
different octaves of each note do have distinct frequency signatures, but they differ by the addition or removal
of one or two frequencies in a typically bass guitar range. So for our purposes, we expect this to give a close
enough approximation.

The resulting factors a(l), b(l), and c(l) after performing NNCP decomposition are displayed in Figure 3.
Amazingly, the algorithm identifies commonly used notes across the 27 songs in the factors a(l). The note’s
rhythms are captured in the factors b(l), and the factors c(l) highlight which song uses the note a(l).

2I acknowledge I have made an error in this assumption. There are in fact 12 common notes used in western music: A,
A♯/B♭, B, C, C♯/D♭, D, D♯/E♭, E, F , F ♯/G♭, G, and G♯/A♭. The slashes are used to indicate enharmonically equivalent
notes. Rather than redoing the code and figures, the idea and conclusions from the results still follow, with the understanding
that we may be missing a note if all 12 notes be present in the 27 songs examined.

4

F
ig
u
re

3:
(L

ef
t
to

ri
gh

t)
F
re
q
u
en
cy

fa
ct
or
s
a
(l
)
,
th
ei
r
ti
m
e
en
ve
lo
p
es

b(
l)
,
a
n
d
so
n
g
a
ct
iv
a
ti
o
n
c(

l)
fr
o
m

th
e
ex
p
er
im

en
t
p
er
fo
rm

ed
in

S
ec
ti
o
n
3
.3
.

5

Comparing this experiment to the previous one, the rank-1 decomposition experiment from Section 3.2
performs something similar to a single Fourier transform and envelope extraction. This rank-11 decom-
position however simultaneously performs a feature identification, and Fourier-like transform and envelope
extraction of each note. Additionally, each feature is labelled in such a way that we know which songs use
each note.

To investigate this further with an example, we will consider the k = 22th song in the dataset. Looking
at the c(l) factors in Figure 3, we see the l = 1 and l = 2 terms both have a large spike at the 22th entries
(c(1))22 and (c(2))22. The rest of the (c(l))22 entries are approximately 0. This suggests the song k = 22 is
made up of the two notes a(1) and a(2) with the rhythms b(1) and b(2). Finding the maximum peaks of a(1)

and a(2), we can identify these notes as F and A♯ with frequencies 90Hz and 110Hz.

We can then recover the song k = 22 by the following procedure. First, take the tensor product the
frequency and time factors to obtain a spectrogram for each note S(l) = a(l) ⊗ b(l). Then we can add the

complex phase from the original song to get our STFT matrix Y (l) = S(l)ei∠Y k

. Finally, we take the inverse
STFT to recover our time domain signals of each note y(l) = STFT−1(Y (l)). The resulting peak-normalized
signals are plotted in Figure 4. Our low-rank approximation of this song is then the sum of these two term
ỹk = y(1) + y(2). This approximation is compared with the original song in Figure 5. We can see in this
figure how close these signals are. The audio of these two signals can be heard in the slideshow.ipynb file
on GitHub.

Figure 4: The recovered time domain signals y(l) = STFT−1
(
(a(l) ⊗ b(l))ei∠Y 22

)
, peak-normalized, from

the first two terms of the rank-11 decomposition of T for l = 1 (left) and l = 2 (right).

Figure 5: Comparison between the reconstructed song ỹk (left) and the original song yk (right) for the k = 22
song in the dataset. The reconstruction is created by summing the first two rank-1 terms as displayed in
Figure 4.

6

4 Conclusion

4.1 Summary

For this project, we tested a non-negative low-rank tensor factorization method on musical data. Specif-
ically, we found the Non-negative Canonical Polyadic Decomposition method proposed by Xu and Yin
successfully approximates the spectrograms of bass guitar song clips. Additionally, NNCP extracts the notes
and their rhythms for the songs, and finds which songs use which notes.

4.2 Further Work

Some interesting areas that are worth exploring further include the following ideas. Different instruments
such as drums can be tested to see how well this low-rank model can identify common drum sounds and
rhythms. The main function we are minimizing is the sum of squared differences on the entries directly,
but we could consider using a log-magnitude spectrum to more heavily weight the higher frequencies, which
is typically orders of magnitude smaller in amplitude. In the second experiment, only the first two low
rank terms are examined, so it would be worth going through each term to verify if all 11 terms are in fact
different musical notes. We also rely on using the complex phase from the original signal to reconstruct each
low rank term to playable audio. A more sophisticated phase estimator could be used to better reconstruct
these terms. Finally, a great test of this decomposition method would be on full length songs rather than
short 5-second clips, and on the full dataset available.

5 Acknowledgements

I would like to acknowledge this work was done as part of the MATH 605D course at the University of
British Columbia and thank the teaching assistant Mathew Faltyn and professor Elina Robeva for all their
work in the course this term. It was a pleasure to learn about the exciting field of tensor decompositions
and everything in the course really inspired this project.

7

6 References
[1] Hendrik Purwins et al. “Deep Learning for Audio Signal Processing”. In: IEEE Journal of Selected

Topics in Signal Processing 13.2 (May 2019), pp. 206–219. issn: 1941-0484. doi: 10.1109/JSTSP.
2019.2908700.

[2] Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and Applications”. In: SIAM Review
51.3 (Aug. 6, 2009), pp. 455–500. issn: 0036-1445, 1095-7200. doi: 10.1137/07070111X.

[3] Laetitia Gauvin, André Panisson, and Ciro Cattuto. “Detecting the Community Structure and Activity
Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach”. In: PLOS ONE 9.1
(Jan. 31, 2014), e86028. issn: 1932-6203. doi: 10.1371/journal.pone.0086028.

[4] Valentin Emiya, Ronan Hamon, and Caroline Chaux. “Being Low-Rank in the Time-Frequency Plane”.
In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Apr. 2018,
pp. 4659–4663. doi: 10.1109/ICASSP.2018.8462423.

[5] Marc Le Brun. “Digital waveshaping synthesis”. In: Journal of the Audio Engineering Society 27.4
(1979), pp. 250–266.

[6] Karlheinz Gröchenig. Foundations of Time-Frequency Analysis. Red. by John J. Benedetto. Applied
and Numerical Harmonic Analysis. Boston, MA: Birkhäuser, 2001. isbn: 978-1-4612-6568-9 978-1-4612-
0003-1. doi: 10.1007/978-1-4612-0003-1.

[7] Meinard Müller. “Fourier Analysis of Signals”. In: Fundamentals of Music Processing: Audio, Analysis,
Algorithms, Applications. Ed. by Meinard Müller. Cham: Springer International Publishing, 2015,
pp. 39–114. isbn: 978-3-319-21945-5. doi: 10.1007/978-3-319-21945-5_2.

[8] D. Griffin and Jae Lim. “Signal estimation from modified short-time Fourier transform”. In: IEEE
Transactions on Acoustics, Speech, and Signal Processing 32.2 (1984), pp. 236–243. doi: 10.1109/
TASSP.1984.1164317.

[9] Yangyang Xu and Wotao Yin. “A Block Coordinate Descent Method for Regularized Multiconvex Op-
timization with Applications to Nonnegative Tensor Factorization and Completion”. In: SIAM Journal
on Imaging Sciences 6.3 (2013), pp. 1758–1789. doi: 10.1137/120887795.

[10] Zafar Rafii et al. MUSDB18 - a Corpus for Music Separation. Version 1.0.0. Zenodo, Dec. 17, 2017.
doi: 10.5281/ZENODO.1117372.

[11] Jeff Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”. In: SIAM Review 59.1 (Jan.
2017), pp. 65–98. issn: 0036-1445. doi: 10.1137/141000671.

[12] “Envelope of a Bandpass Signal”. In: Software Receiver Design: Build Your Own Digital Communi-
cation System in Five Easy Steps. Ed. by Andrew G. Klein, Jr Johnson C. Richard, and William A.
Sethares. Cambridge: Cambridge University Press, 2011, pp. 416–420. isbn: 978-1-139-00522-7. doi:
10.1017/CBO9781139005227.026.

8

https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1137/07070111X
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1109/ICASSP.2018.8462423
https://doi.org/10.1007/978-1-4612-0003-1
https://doi.org/10.1007/978-3-319-21945-5_2
https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1137/120887795
https://doi.org/10.5281/ZENODO.1117372
https://doi.org/10.1137/141000671
https://doi.org/10.1017/CBO9781139005227.026

	Introduction
	Background
	Signal Processing
	Short-time Fourier Transform
	Non-negative Canonical Polyadic Decomposition

	Experiments
	Data & Software
	2-order Tensor
	3-order Tensor

	Conclusion
	Summary
	Further Work

	Acknowledgements
	References

